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alert system: impact on mortality
outcomes from a pragmatic
randomized trial

Check for updates

Ping-Hsuan Hsieh1, Chin Lin2, Chin-Sheng Lin3, Wei-Ting Liu3, Tsung-Kun Lin4, Dung-Jang Tsai2,
Yi-Jen Hung5, Yuan-Hao Chen6, Chih-Yuan Lin7, Shih-Hua Lin8 & Chien-Sung Tsai7

Findings from a previous study (ClinicalTrials.gov: NCT05118035) demonstrated that an AI-enabled
electrocardiogram (AI-ECG), combining AI reports and physician alerts, effectively identified
hospitalized patients at high risk of mortality and reduced all-cause mortality. This study evaluates its
cost-effectiveness from the health payer’s perspective in Taiwan over a 90-day post-intervention
period. Cost data were obtained from electronic health records of participating hospitals, and
incremental cost-effectiveness ratios (ICERs) per death averted were calculated. Non-parametric
bootstrap techniques were used to address uncertainty. Among 15,965 patients, 90-day all-cause
mortality was 3.6% in the intervention group versus 4.3% in controls. Medication and ICU costs were
higher in the AI-ECG group, but overall medical cost was similar ($6204 vs. $5803). The ICER was
$59,500 (95% CI: $-4657 to $385,950) per death averted. The cost-effectiveness acceptability curve
showed that 95% of the probability mass lies below a willingness-to-pay threshold of $409,321,
supporting favorable cost-effectiveness despite uncertainty.

Clinical decision support systems (CDSS) embedded in electronic health
records (EHRs) enhance patient safety and guide clinicians toward
evidence-based care1. By leveraging “big data” and predictive algorithms,
CDSS optimize workflows, reduce medication errors, and identify patients
at high risk of adverse outcomes, such as in-hospital mortality2,3. Advances
in artificial intelligence (AI) have further expanded the capabilities of CDSS,
resulting in innovative tools and commercial products that improve
decision-making and patient outcomes. Many of these systems are now
integrated intomedical devices, offering newways to visualize and interpret
clinical data4,5. However, while AI-driven CDSS hold promise, there is
limited evidence supporting their economic value and clinical impact,
particularly in real-world settings6.

The electrocardiogram (ECG) is a widely used diagnostic tool, per-
formed over 3 million times daily worldwide7, and is routinely utilized for

admission and preoperative evaluations to assess potential cardiac risks.
With the advancement of AI8, AI-enabled ECG (AI-ECG) has demon-
strated the ability to detect previously undetectable conditions, such as low
ejection fraction and paroxysmal atrial fibrillation9–11. AI-ECG has also
shown strong predictive power for 1-year mortality, with area under the
curve (AUC) values exceeding 0.8512,13. An AUC of 0.85 indicates excellent
discrimination, meaning the AI-ECG model has a high ability to differ-
entiate between patients who will experience an event (such as death) and
those who will not, highlighting its potential for use in critical care triage.

The rapid response system (RRS) has been shown to enhance the
recognition and management of high-risk patients, reducing mortality14,15.
A recent randomized controlled trial (RCT) evaluated the integration of
AI-ECG into a track-and-trigger system (TTS) within a RRS. This inno-
vative approach enabled real-time identification of hospitalized patients at
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high mortality risk, prompting physicians to initiate timely interventions16.
The trial demonstrated a significant 17% reduction in 90-day mortality
(hazard ratio [HR]: 0.83; 95% confidence interval [CI]: 0.70–0.99) in the
intervention group compared to controls. However, this improvement was
accompanied by increased ICU admissions and additional cardiac investi-
gations, leading to higher care cascade costs.

Despite these promising results, the cost-effectiveness of AI-ECG sys-
tems remains unclear, particularly in the context of their integration into
routine clinical practice. Given that healthcare resources are limited,
investments in new technologies often come at the expense of potential
investments in other areas, highlighting the importance of considering
opportunity costs. Therefore, it is crucial to evaluate not only clinical efficacy
but also the economic impact of new technologies to support informed
healthcare decision-making. This study is novel in providing the first com-
prehensive economic evaluation of an AI-ECG system, assessing both its
clinical outcomes and incremental cost-effectiveness from a health payer’s
perspective. By addressing these critical gaps, this research aims to inform the
sustainable adoption of AI-driven CDSS in real-world healthcare settings.

Results
Participants and outcomes
A complete description of patients characteristics for the AI-ECG alert
clinical trial is available is themain trial article16. Briefly, 15,965patientswere
randomized, with 8001 assigned to the AI-ECG group and 7964 to the
control group. Themean agewas 60.9 ± 18.5 years in the intervention group
and 61.5 ± 18.2 years in the control group, with 50.9% and 52.3% male,
respectively. Baseline characteristics were well balanced between groups at
admission (SupplementaryTable 1).The 90-day all-causemortality ratewas
3.6% in the intervention group compared to 4.3% in the control group.
Clinical and resource utilization outcomes are summarized in Table 1. On
average, patients in the AI-ECG group received slightly more ECGs than
those in the control group (2.41 ± 3.53 vs. 2.27 ± 2.71). Themedian lengthof
hospital stay was 2 days (IQR: 7) in both groups. ICU admission within
3 days occurred in 3.6% of patients in the AI-ECG group and 3.4% in the
control group.Among those admitted to the ICU, themedian length of ICU
staywas 8 days (IQR: 13.2) in the intervention group and 7days (IQR: 11) in
the control group.

Cost analysis
Figure 1 shows the average costs per patient for various medical cost
components and their proportions in the AI-ECG and control groups over

the 90 days. As presented in Fig. 1A, the average total cost was higher in the
AI-ECG group ($6204) compared to the control group ($5803). The
incremental cost between the two groups was $402 (95% CI, 61–735). The
cost components show slight variations between the two groups, with drug
($154 difference, 38% increase) and ICU costs ($79 difference, 20%
increase) beingmarginally higher in theAI-ECGgroup. Figure 1B illustrates
the proportion of each cost component within the total costs. In both
groups, the largest proportion of costs is attributed to drugs (21.4% vs.
20.3%), followed by examination,medical supplies and procedures. TheAI-
ECG group had slightly higher proportions of costs allocated to drugs and
ICU, while the control group had a higher proportion of costs allocated to
other cost components.

Cost-effectiveness analysis
The cost-effectiveness of the AI-ECG alert in reducing all-causemortality is
presented inTable 1.Despite the higher costs, theAI-ECGgroup exhibited a
lowermortality rate (3.6% vs. 4.3%). The incremental cost per death averted
in the AI-ECG group was $59,500, with a 95% CI of −$4657 to $385,950.

The cost-effectiveness plane presents the uncertainty around the
bootstrapping estimates of ICER, as shown in Fig. 2. In most bootstrapped
samples, there was a tradeoff between costs and effectiveness when com-
paring the AI-ECG alert system to usual care. Among the 5000 bootstrap
samples, 96.8% were located in quadrant I (higher costs and more deaths
averted). AI-ECG alert dominated usual care in 2.3% of cases (lower costs
andmore deaths averted) andwas dominated in less than 0.1%of cases. The
cost-effectiveness acceptability curve (Fig. 3) shows a 50% probability of
cost-effectiveness at a ICER threshold of $60,628 and a 95% probability at
$409,321. Furthermore, for those identified as “high risk” in the population
cohort, the incremental cost per death averted in the AI-ECG group was
$19,863 (95% CI: −7954 to 73,753). The distribution of bootstrap samples
was shown in Supplementary Fig. 1.

Sensitivity analyses
To assess the robustness of the base-case results, we conducted sensitivity
analyses by varying both the unit price of the AI-ECG alert system ($4, $8,
and $32) and the override rate (0%, 40%, and 60%).We selected these three
override levels to represent ideal, moderate, and high alert fatigue scenarios
while maintaining interpretability. The analysis showed that although
higher override rates and increased AI-ECG costs led to slightly increased
ICERs, the intervention remained within a potentially acceptable cost-
effectiveness range under all scenarios (Table 2).

Table 1 | Summary of clinical outcomes, medical costs, and cost-effectiveness of AI-ECG alerts versus usual care (n = 15,965)

Category Outcome AI-ECG
(n = 8001)

Usual care
(n = 7964)

Incremental cost (95% CI)

Clinical and resource utilization Number of ECGs, mean (SD) 2.41 (3.53) 2.27 (2.71) –

Length of hospital stay, median (IQR), days 2 (7) 2 (7) –

ICU admission within 3 days, % 3.6% 3.4% –

Length of ICU stay, median (IQR), days 8 (13.2) 7 (11) –

90-Day medical costs, mean ($) Total cost 6204 5803 402 (61–735)

Drug 1331 1177 153 (−6–330)

Examinations 1181 1145 36 (−24–96)

Medical supplies 1157 1100 56 (−40–150)

Procedures 1055 1013 42 (−36–119)

Ward 626 616 9 (−28–48)

ICU 474 395 79 (19–142)

Diagnosis 246 240 5 (−3–14)

Others 135 116 19 (−1–41)

Clinical effectiveness Mortality rate, % (95% CI) 3.6 (3.2–4.1) 4.3 (3.8–4.8) –

Cost-effectiveness Incremental cost per death averted ($, 95% CI) 59,500 (−4657 to 385,950) Reference –
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Subgroup analyses revealed notable variation in the cost-effectiveness
of AI-ECG alerts across different patient groups (Supplementary Table 2).
The intervention appearedmore cost-effective among inpatients,males, and
individualswith hypertension. In contrast, some subgroups, such as females
and those aged 65 to 74, showed less favorable or more uncertain results,
highlighting the importance of targeted application and the need for further
validation. Among high-risk patients, cost-effectiveness was generally more
favorable and consistent (Supplementary Table 3). In this group, several
subpopulations, including those with heart failure or hypertension,
demonstrated dominant results. Compared to the overall study population,
the intervention in high-risk patients was associated with greater mortality
reduction and more stable ICERs, indicating its potential value in guiding
more focused implementation strategies.

Discussion
The present study reports the direct medical costs associated with imple-
menting AI-ECG alert system in predicting mortality risk compared to
usual care in hospitalized patients from a RCT. Results of this economic
evaluation revealed the implementation of AI-ECG resulted in a modest
increase in short-term healthcare costs while reducing 90-day all-cause
mortality. Fromahealthcare payer’s perspective, the intervention appears to

represent a cost-effective strategy, particularly when used in a population
with elevated baseline risk.

Using AI to analyze existing ECGs can provide clinicians with a wealth
of additional information. Beyond indicating high mortality risk12,13, AI can
also identify conditions like low ejection fraction and paroxysmal atrial
fibrillation9–11, prompting clinicians to consider further interventions. Pre-
vious RCT have demonstrated that this type of AI-ECG can prompt clin-
icians to arrange echocardiograms for high-risk patients to confirm the
possibility of low ejection fraction17. The increase in interventions following
such alerts is not unique to AI-ECG; other studies have also shown that AI
alerts can influence physician decision-making18. The present findings also
indicate that the AI-ECG alert system for mortality risk may alter physician
behavior, such as by prompting more diagnostic tests or increasing the
provision of intensive care16. In the present study, the observed differences in
totalmean costs per patientwere primarily associatedwith higher drug costs,
followedby ICUstay costs andmedicalmaterial costs. Therefore, the focus of
the cost-effectiveness analysis is on the relationshipbetween the costs of these
additional medical interventions and the observed reduction in mortality.

In the base-case analysis, the ICER was $59,500 per death averted. The
cost-effectiveness acceptability curve indicated a 95% probability that the
intervention would be considered cost-effective at a WTP threshold of

Fig. 1 | Comparison of total and proportionalmedical costs betweenAI-ECG and
control groups. A Costs across different components, showing slight differences
between groups, with drug and ICU costs marginally higher in the AI-ECG group.

BProportional distribution of cost components, with the AI-ECG group allocating a
slightly greater share to drugs and ICU care. diff difference.
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$409,321. This wide range of uncertainty is likely due to the relatively small
differences in both costs and mortality between the intervention and control
groups.When such differences aremodest, even small variations in either can
cause large fluctuations in the ICER estimates, especially when using resam-
pling methods. The base-case ICER corresponds to approximately 1.8 times
Taiwan’s WTP threshold for a QALY gained, while the upper bound aligns
with 12.3 times that threshold.Given the average age of patients in the trial (61
years) and a life expectancy of around 80 years in Taiwan, each death averted

could conservatively translate into 7 to 12 additional QALYs. Using a WTP
threshold equivalent to one time Taiwan’s GDP per capita, the implied
acceptable range foradeathavertedwouldbebetween$232,638and$398,808.
In this context, the findings suggest that the intervention is likely to be cost-
effective in Taiwan’s healthcare system and potentially applicable to other
middle- or high-income countries with similar or higher WTP thresholds.

In this cost-effective analysis, the cost of the AI-ECG alert system itself
is the first factor to consider. However, the results of this study suggest that

Fig. 2 | Distribution of bootstrap samples for cost
per death averted among all participants. Among
the 5000 bootstrap samples, 96.8% fell in quadrant I,
indicating higher costs and more deaths averted
with the AI-ECG alert system. AI-ECG alert domi-
nated usual care in 2.3% of samples and was domi-
nated in less than 0.1%.

Fig. 3 | Acceptability curve of ICERs per death averted among all participants.
The cost-effectiveness acceptability curve illustrates the probability that the AI-ECG
intervention is cost-effective across a range of willingness-to-pay (WTP) thresholds.

The dashed lines indicate theWTP values at which the AI-ECG alert system reaches
a 50% probability ($60,628) and a 95% probability ($409,321) of being cost-effective.
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the costs of the AI-ECG alert system have no significant impact on
healthcare team expenditures. Since ECGs are inherently very inexpensive
tests, past research has emphasized that the cost-effectiveness analysis of
ECGs should focus more on the care cascades triggered by ECGs. In
asymptomatic adults, low-value ECGs can initiate care cascades that lead to
substantial economic burdens19,20. However, the in-hospital population
targeted in this studyhad ahighermortality rate (4.3% in the control group),
making ECG both reasonable and in line with standard clinical criteria21. In
the base-case analysis, each AI-ECG alert was priced at $4, equivalent to the
cost of a standardECG, andgradually increasedup to eightfold.Despite this,
the ICERs remained stable, suggesting that the system’s cost-effectiveness is
not significantly impacted by the cost associated with AI analysis itself.

Many clinical support systems have been designed to assist physicians
and improve patient safety, yet these alerts are often overridden due to alert
fatigue. Previous studies have shown that override rates can reachup to three-
quarters in inpatient settings and nearly two-thirds in emergency
departments22,23, though most of these were related to prescribing alerts. As
most costs stem from the testing and treatment following an AI-ECG alert,
even if ahigheroverride rate at60% is seenwith large-scale implementation in
the future, while themortality reduction effect may weaken, the ICERwould
remain relatively stable, indicating that the economic benefits of imple-
menting AI-ECG alerts are unlikely to be diminished by alert fatigue, in part
because the additional costs of the AI-enabled ECG system is relatively low.

Critical care, particularly admission to ICU, is widely recognized for
significantly reducing patientmortality24. An important issue is the extremely
high cost of ICU care, and numerous studies have previously focused on
identifying patients who would benefit most cost-effectively from ICU
interventions. Cost-effectiveness analysis has shown that ICU intervention is
economically beneficial for patientswith a SimplifiedAcute Physiology Score
(SAPS) II predicted mortality greater than 5%, and it is even more cost-
effective for those with predicted mortality exceeding 40%25. Another study
suggests considering the withdrawal of ICU care for patients with an Acute
Physiology and Chronic Health Evaluation (APACHE) III predicted mor-
tality greater than 90%26. Two seemingly opposing pieces of evidence high-
light a key point: interventions should be directed toward patients with a
moderate risk of mortality. In the control group of this study, the high-risk
patients had a mortality rate of 23%, while low-risk patients had a 2.4%
mortality rate, aligning with the recommendations of previous studies27. A
study has reported that 62% of inpatients who experienced cardiac arrest
showed signs of physiologic instability formore than 6 h before the event, yet
only22%hadexplicit documentation28.This indicates that critical care should
focuson theearly identificationofdeteriorationsigns, rather thanrecognizing
them only when the patient enters an irreversible process of dying29. By
appropriately allocating medical resources to patients showing early signs of
deterioration, mortality rates can be reduced. This study demonstrates that
AI-ECG can substantially enhance the cost-effectiveness of critical care.

Akey limitationof the study is that itwas conducted inTaiwan,with cost
analysis tailored to the Taiwanese healthcare system, which may restrict the
generalizability of the findings to other countries. Differences in healthcare
systems, along with demographic and socioeconomic disparities, could
influence the cost-effectiveness. Previous studies comparing AI-ECG for
asymptomatic left ventricular dysfunction screening to usual care have shown
significant variations in ICERs, primarily due todifferences inhealthcare costs
across regions30,31. Therefore, further investigation and validation across
diverse healthcare settings are necessary to ensure broader applicability.
Moreover, although development, staff training, maintenance, and adminis-
trative costs are important components of a comprehensive cost-effectiveness
analysis, these implementation-related expenses were not included in the
base-case analysis. Omitting such costsmay lead to an underestimation of the
ICER, as they contributemeaningfully to the real-world cost and effectiveness
of the intervention32. However, these expenses are often difficult to quantify
during early-stage development and are likely to become clearer during
commercialization and reimbursement planning. Importantly, our sensitivity
analyses showed that the ICER per death averted remained stable even when
the cost of the AI-ECG system was increased by up to eightfold, suggesting
that the findings are robust to variations in the cost of the intervention itself.

Additionally, the evaluation was conducted from a health payer’s per-
spective, excluding costs borne by patients and their families after hospitali-
zation, whichmay result in an underestimation of the total economic impact.
We also did not include future healthcare costs associated with extended
survival (i.e., life extension costs), which are sometimes considered in lifetime
models. This exclusion may further contribute to a conservative estimate of
the ICER. Lastly, this study did not extrapolate deaths averted into QALYs
gained or adopted a lifetime horizon, as the trial population was hetero-
geneous, and the follow-up period was limited to 90 days. Future research
may consider these approaches to capture longer-term health outcomes.

The AI-ECG alert significantly reduced all-cause mortality among
hospitalized patients. Although it incurred slightly higher costs than
usual care, the incremental costs per death averted suggest favorable
cost-effectiveness, even when accounting for the large uncertainty in the
ICER. The AI-ECG alert system presents a promising and cost-effective
approach to improving patient outcomes. However, further validation
across diverse clinical settings is necessary to ensure the generalizability
of these findings.

Methods
The economic evaluation was a cost-effectiveness analysis conducted
alongside a pragmatic randomized clinical trial in Taiwan, assessing the
impact of an AI-ECG alert system on clinical outcomes16. The study period
ran fromDecember 15, 2021, to April 30, 2022, with follow-up extending to
July 31, 2022, allowing for a 90-daypost-intervention analysis for all patients
included up to the end of the intervention period. The Consolidated Health
Economic EvaluationReporting Standards (CHEERS) checklist was used to
demonstrate adherence to its reporting guidelines33.

Trial design
Both the RCT and the cost-effectiveness analysis were approved by the
Institutional Review Board of Tri-Service General Hospital, Taipei, Taiwan
(approval numbers A202105120 and A202405157). The trial included 39
eligible attending physicians from the internal medicine and emergency
medicine departments, all of whom provided informed consent. As the
research team did not have direct contact with patients and de-identified
patient-level data were collected through EHRs, patient consent was waived
by the ethics committee. The inclusion criteria encompassed any patient in
the emergency department or inpatient wards who underwent at least one
ECG for any clinical indication during the study period. Patients under 18
years of age and those with a time delay of more than 2 h between ECG
recording and AI-ECG analysis were excluded. All eligible patients were
included in the analysis.

Randomization was conducted based on the hospital’s seven-digit
serial medical record numbers. This patient-level randomization ensured

Table 2 | Sensitivity analysis of the prices of AI-ECG alert and
override rates on the cost-effectiveness

Cost of
AI-ECG

Override
rate (%)

Incremental
cost ($)

Reduction in
mortality rate (%)

ICER ($)

$4 0 409 (68, 743) 0.7 (0.0, 1.4) 59,500

40 249 (−81, 572) 0.4 (−0.2, 1.1) 61,787

60 168 (−146, 468) 0.3 (−0.4, 1.0) 63,006

$8 0 413 (72, 747) 0.7 (0.0, 1.4) 60,082

40 253 (−77, 576) 0.4 (−0.2, 1.1) 62,778

60 172 (−142, 472) 0.3 (−0.4, 1.0) 64,509

$32 0 437 (96, 771) 0.7 (0.0, 1.4) 63,575

40 277 (−53, 600) 0.4 (−0.2, 1.1) 68,726

60 196 (−118, 496) 0.3 (−0.4, 1.0) 73,527

Each block represents a different assumed cost of the AI-ECG alert system. Override rates simulate
varying levels of alert adoption by clinicians. The bold values indicate the base-case scenario.
ICER incremental cost-effectiveness ratio.
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longer patient follow-up and minimized potential loss of follow-up that
could occur with physician-level randomization. The randomization pro-
cess was completed before the trial began, using simple random sampling.
Half of the possible medical record numbers were allocated to the inter-
vention group, meaning the randomization may have occurred prior to the
actual creation of the medical record numbers. The trial commenced on 15
December 2021, when the AI-ECG support system was activated for
patients in the intervention group, and concluded on 30 April 2022, with
approximately 8000 patients assigned to each arm.

Intervention and comparator
TheAI-ECGsystemused in this study is a convolutionalneuralnetwork,with
its technical details previouslydescribed in anearlier publication13.Themodel
was trained on more than 450,000 ECGs, using all-cause mortality as the
primary label and incorporating survival data with censored events. The AI-
ECGsystemwas designed todetect high-riskmortality indicators fromECGs
and immediately notify attendingphysicians throughawarningmessage sent
to their smartphones. This notification included a high-risk assessment and
provided a link to access the detailed ECG and AI-ECG prediction results.

The system aimed to prompt timely medical evaluations and inter-
ventions without altering standard procedures or treatment criteria, which
remained unaffected by AI-ECG findings before the trial. While the inter-
vention emphasized high-risk alerts, the AI-ECG system also provided risk
levels for all patients in the interventiongroup, enablingphysicians to review
these assessments at their discretion through the EHR system. In contrast,
patients in the control group receivedusual care andwerenot coveredby the
active warning message service provided by the AI-ECG system.

Clinical outcome
The endpoint of the study was all-cause mortality within 90 days post-
intervention, chosen for its robustness against clinician biases. Mortality
status was tracked using EHRs, with additional verification to confirm the
survival status of any censored patients up to their last recorded hospital
visit. While it is possible that some patients may have died outside the
hospital and were not captured in the EHR, we ensured that all censored
patients were confirmed alive up to the time of their most recent recorded
hospital encounter.

Health resource utilization and cost
This economic evaluation was conducted from the perspective of Taiwan’s
National Health Insurance (NHI). The total cost for each participant was
determinedby aggregating allmedical resourceutilization incurredduring the
hospital stay. Cost data were extracted directly from the EHR systems of the
participating hospitals, where they were originally recorded in New Taiwan
Dollars (NTD$). These data included both costs reimbursed by the NHI and
out-of-pocket expenses paid by patients. The extracted data were categorized
into eight groups: drugs, examinations, medical supplies, procedures, diag-
noses, wards, intensive care units (ICU), and others. Procedure costs included
fees for various medical treatments and interventions, while medical supplies
encompassed both consumables and more advanced medical devices. Diag-
nosis costs covered fees for consultations and assessments by physicians and
specialists. Costs were converted to USD according to the currency rate
obtained from the Bank of Taiwan on November 18, 2024.

Cost-effectiveness was evaluated by calculating the incremental cost-
effectiveness ratio (ICER), which represents the additional costs of one
intervention compared to another, divided by the additional effects gained
from one intervention compared to another. Since there is no established
consensus on the willingness-to-pay (WTP) threshold for a death averted,
we used theWTP for a quality-adjusted life year (QALY) gained as a proxy.
Following WHO guidelines and broader health economic literature, one
Gross Domestic Product (GDP) per capita was considered an appropriate
threshold for assessing cost-effectiveness in Taiwan34,35. Accordingly, the
thresholdwas set at $33,234perQALYgained, basedonTaiwan’s published
2024GDPper capita. As this analysis focused on a 90-day post-intervention
period, discounting was not applied in the cost estimation.

Statistical methods
To address uncertainty in cost and outcome data, we employed non-
parametric bootstrappingwith 5000 replications to generate distributions of
mean costs and effects for both the AI-ECG and control groups. These
bootstrap replications were used to calculate the incremental cost per death
averted and to construct 95% confidence intervals (CIs) around the ICERs.
To further assess uncertainty in decision-making, we constructed a cost-
effectiveness acceptability curve (CEAC) by plotting the proportion of
bootstrap replications that fall below varying WTP thresholds for a death
averted. Notably, there were no missing data in this trial, as all relevant
medical records were assumed complete and available for analysis.

We conducted sensitivity analyses by varying two key variables to
estimate their impact on the ICER: (1) the cost of theAI-ECGservice and (2)
the override rate of the AI-ECG alerts. In the absence of clear pricing
guidelines forAI-ECG,we initially set the cost at $4, equivalent to a standard
ECG, and progressively increased it up to eightfold. To account for potential
non-adherence toAI alerts in real-world practice,wemodeled override rates
of 40 and 60%. In these analyses, we assumed that patients whose AI-ECG
alertswere overriddenwould have outcomes similar to those receiving usual
care. Accordingly, we sampled cost and outcome data with replacement
from the control group at proportions corresponding to the override rates.

We also performed subgroup analyses to explore potential hetero-
geneity in cost-effectiveness across patient characteristics (e.g., age, sex,
comorbidities) and hospital settings (e.g., academic medical center vs.
community hospital, emergency vs. inpatient department). For each sub-
group, we calculated incremental costs, absolute reduction inmortality, and
the ICER per death averted.

Data availability
Patient data cannot be made publicly available due to privacy concerns. De-
identified tabular data can be obtained from the corresponding author on
approval from the ethics committee of the Tri-Service General Hospital.
Approval from this committee can be requested from the Tri-Service General
Hospital’s Clinical Trial Management System (https://tsgh.cims.tw/wiPtms/
index.html), with an expected review period of approximately 2–3months.
After approval, researchers will be granted VPN access to perform analyses,
ensuring data security and confidentiality (summary data can be exported),
with measures in place to prevent any breach of personal information.
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